

Learning Heuristic Search via Imitation

Mohak Bhardwaj, Sanjiban Choudhury, Sebastian Scherer

Real-time planning for fast UAVs

Different planners do well on different scenarios

Can't we use a single versatile planner?

Optimal planners, by ignoring context, are unable to succeed in real-time

Planner wastes time checking unlikely edges

Historically, focus has been on worst-case

ACM Doctoral Dissertation Award 1987

The Complexity of Robot Motion Planning John F. Canny

The MIT Press

Computational complexity and completeness (Canny, 1988)

Asymptotic optimality (Karaman and Frazolli, 2010)

5

The case for data-driven planning

We should care about the expected performance of planners on the distribution of problems the robot actually encounters

Distribution of problems

Outline

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Outline

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Graphs are excellent representations that allow generalization across domains

Non-holonomic path planning (Our domain)

7D robot arm planning (Dellin and Srinivasa, 2016)

(Silver et al., 2016)

 $G = \langle V, E \rangle$

Vertices: States of
the robotEdges: Dynamically
feasible connections

A heuristic guides the search tree

Heuristics should minimize edge evaluations

Online edge evaluation is the computational bottleneck in planning

Check robot mesh against all object meshes in environment

Check UAV volume against occupancy grid / point cloud

The key to real-time performance is minimizing online edge evaluations $_{11}$

Objective: Find a feasible path while minimizing edge evaluation

We want to compute a heuristic policy that explicitly minimizes expected edge evaluation

Finding a feasible path in real-time suffices for now

Can be extended to incorporate path cost in an anytime framework: Find a feasible path quickly and refine over time

Outline

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

General framework for SEARCH

Key Insight: Search as sequential decision making under uncertainty(over World map)

State $\boldsymbol{s_t}$	$\langle \mathcal{O}_t, \mathcal{C}_t, \mathcal{I}_t angle$
Action a_t	$\mathtt{Select}\left(v\in\mathcal{O}_{t} ight)$
Reward r_t	$0 \text{ if } v_g \in \mathcal{O}_t \\ -1 \text{ otherwise}$
$\begin{array}{c} \text{Transition} \\ \text{Model} \\ P\left(s_{t+1} \mid s_t, a_t\right) \end{array}$	Induced by underlying world $\phi \sim P(\phi)$

Heuristics as policies

Classifier that maps state of search to node to expand (from Open).

Optimal policy explicitly minimizes planning effort.

Related Work

Learning heuristics for planning

Heuristics using supervised learning techniques

Yoon et. al, 2006

Xu et. al, 2007, 2009, 2010

Thayer et. al, 2011

Garrett et. al, 2016

Aine et. al, 2015

Deep Learning for planning

Incorporating long term deliberation in reinforcement learning and deep learning agents

Zhang et. al, 2016 Kahn et. al, 2014 Tamar et. al, 2016 Gupta et. al, 2017 Gao et. al, 2017

Imitation Learning of oracles

Non i.i.d supervised learning from oracle demonstrations under own state distribution

Ross et. al, 2011, 2014

Chang et. al, 2015

Sun et. al, 2017

Choudhury et. al, 2017

Outline

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Representing search state

Compress search state $s_t = \langle \mathcal{O}_t, \mathcal{C}_t, \mathcal{I}_t \rangle$ to get f_t for each $v \in \mathcal{O}_t$

Search based: Depend on the current status of the search tree

(x_v, y_v)	Vertex location in world	$\mathbf{h}_{\mathrm{EUC}}$	Euclidean distance to goal
(x_{v_g}, y_{v_g})	Vertex location in world	$\mathbf{h}_{\mathtt{MAN}}$	Manhattan distance to goal
g_v	Cost of shortest path to start	d_{TREE}	Vertex depth in tree

World based: Depend on environment uncovered so far

$(x_{ m OBS}, y_{ m OBS}, d_{ m OBS})$	Coordinates and location of closest node in ${\cal I}$
$(x_{\text{OBSX}}, y_{\text{OBSX}}, d_{\text{OBSX}})$	Coordinates and location of closest node in ${\mathcal I}$ in x-coordinate
$(x_{\text{OBSY}}, y_{\text{OBSY}}, d_{\text{OBSY}})$	Coordinates and location of closest node in \mathcal{I} in y-coordinate

Note: Feature calculation should not expend extra search effort!

Model-free reinforcement learning is slow to converge

Input problem

Poor rollout with learner

 $\mathbf{White}-\mathbf{Nodes}\ \mathbf{Expanded}$

Large state and action spaces; Sparse reward

But we can do better!

Key Insight: Construct an optimal oracle using dynamic programming. (*backward Dijkstra's algorithm*)

Oracle is "clairvoyant" with access to true state of underlying world. (Choudhury et al., 2017)

Imitation Learning with cost-to-go

Learn a function approximator for the oracle's Q value

$$\hat{\theta} = \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,min}} \mathbb{E}_{\substack{\phi \sim P(\phi) \\ t \sim \mathcal{U}(1...T)}} \left[\left(Q_{\theta} \left(s_{t}, a_{t} \right) - Q^{\operatorname{OR}} \left(v, \phi \right) \right)^{2} \right]_{\text{Oracle label}}$$
Uniformly sampled time-step $s \sim d_{\pi}^{t}$ Oracle label
Distribution of states under roll-in policy π

Planner follows greedy policy with respect to search effort

$$\hat{\pi}(s_t) = \underset{a_t \in \mathcal{A}}{\arg\min} \ Q_{\hat{\theta}}\left(s_t, a_t\right)$$

Reduction to no-regret online learning

Learn a function approximator for the oracle's Q value

 $\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \mathbb{E}_{\substack{\phi \sim P(\phi) \\ t \sim \mathcal{U}(1...T)}} \left| \left(Q_{\theta} \left(s_{t}, a_{t} \right) - Q^{\operatorname{OR}} \left(v, \phi \right) \right)^{2} \right|$ Uniformly sampled time-step $s \sim d^t_-$ Oracle label Distribution of states under roll-in policy π Solution: **Problem:** Iterative learning, roll-in with Using oracle to mixture of oracle + learner, roll-in leads to dataset aggregation distribution mismatch (Ross and Bagnell, 2014) 23

Search As Imitation Learning (SAIL)

Run *m* episodes in every iteration $i = 1 \dots N$

Repeat steps (2-3) at k uniformly sampled steps

Train π_{i+1} on aggregated dataset \mathcal{D}

Repeat above steps to train N policies $\pi_1 \dots \pi_N$ Return best π_i on validation

Outline

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Benchmark experiments: Setup

8 different databases of 2D planning problems of varying complexity.

World: bitmap of obstacles and free space. Size: 200mx200m

Start and goal fixed across problems (bottom-left to top-right).

Graph, $G = \langle V, E \rangle$: 1m resolution and 8-connected neighbors.

Code

Code and details: https://mohakbhardwaj.github.io/SalL/

Benchmark experiments: Baselines

Motion Planning Baselines:

1. Greedy search with Euclidean heuristic (h_{EUC})

2. Greedy search with Manhattan heuristic (h_{MAN})

3. MHA* ([h_{EUC} , h_{MAN} , d_{OBS}])

Machine Learning Baselines:

1. Behavior Cloning

2. Reinforcement Learning – C.E.M and Q-Learning.

All results shown are after 15 iterations of SAIL, training on 200 environments per iteration. Behavior Cloning trains on 600 environments

SaIL has competitive performance across all datasets

Dataset	Sample Worlds	SAIL	\mathbf{SL}	CEM	\mathbf{QL}	$h_{\rm EUC}$	$h_{\mathbf{MAN}}$	A*	MHA*
Alternating Gaps		0.039	0.432	0.042	1.000	1.000	1.000	1.000	1.000
Single Bugtrap		0.158	0.214	0.057	1.000	0.184	0.192	1.000	0.286
Shifting Gaps		0.104	0.464	1.000	1.000	0.506	0.589	1.000	0.804
Forest	52 <u>5</u> 4 52	0.036	0.043	0.048	0.121	0.041	0.043	1.000	0.075
Bugtrap+Forest		0.147	0.384	0.182	1.000	0.410	0.337	1.000	0.467
Gaps+Forest		0.221	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Mazes		0.103	0.238	0.479	0.399	0.185	0.171	1.000	0.279
Multiple Bugtraps		0.479	0.480	1.000	0.835	0.648	0.617	1.000	0.876

SaIL is able to exploit relative configuration of obstacles and environment structure.

SaIL is able to detect and escape local minima

SaIL has faster convergence than all learning baselines

across environments

Converges way faster than model free RL

31

Current Work: Evaluation on helicopter planning

Dataset of canyons (in simulation)

 $2532 \ \mathrm{expansions}, \ 700 \mathrm{ms}$

 $18\ \mathrm{expansions},\ 100\mathrm{ms}$

Fills up entire canyon

> Sticks to middle of canyon

Current Work: Evaluation on an UAV flying in complex environments

UAV has to fly at high speeds (5 - 15 m/s) and avoid no-fly-zones (other aircrafts / above building) that create complex environments

Evaluation on an UAV flying in complex environments

(Left) SaIL trained on dataset of mazes in simulation. (Below) Tested on a real maze with planning onboard

(Left) A^* expands **1910** states (1000 ms). (Below) SaIL expands 180 states (120 ms)

Future Work

Recurrent architectures

Exploit the temporal structure of the problem and reduce dependence on features. (Deeply AggreVaTeD, Sun et. al, 2017)

Anytime Planning

Try to incorporate solution cost into heuristic training procedure.(Densification Strategies for Anytime Motion Planning over Large Dense Roadmaps, Choudhury et al, 2017)

Generating data for training

Microsoft AirSim

Appendix 1: Cost-Sensitive Imitation Learning

Learner's misclassification weighted by Oracle's Q-value (Ross et al., 2014):

$$\hat{\pi}\left(s\right) = \underset{\substack{\pi \in \Pi \\ s \sim d_{\pi}^{t}}}{\operatorname{arg\,min}} \mathbb{E}_{\substack{\phi \sim P(\phi) \\ t \sim \mathcal{U}(1...T)}} \left[Q^{\operatorname{COR}}\left(\pi\left(s\right),\phi\right) - \underset{\substack{v \in \mathcal{O} \\ v \in \mathcal{O}}}{\min} \ Q^{\operatorname{COR}}\left(v,\phi\right) \right]$$

Cost-sensitive classification loss

 $\mathbf{Q}^{COR}\left(v,\phi\right)$ - Oracle label for optimal number of expansions left

$$\pi_{COR}(s_t, \phi) = \underset{v \in \mathcal{O}}{arg\min} \left[\mathbf{Q}^{COR}(v, \phi) \right] \quad \text{- Optimal oracle policy}$$

 d^t_π - Distribution of states induced by rolling-in with mixture policy π

Use reduction of c.s classification to regression

$$\hat{\theta} = \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,min}} \mathbb{E}_{\substack{\phi \sim P(\phi) \\ t \sim \mathcal{U}(1...T) \\ s \sim d_{\pi}^{t}}} \left[\left(Q_{\theta} \left(s_{t}, a_{t} \right) - Q^{\operatorname{COR}} \left(v, \phi \right) \right)^{2} \right]$$

Planner greedily chooses node with least expected search effort

$$\hat{\pi}(s_t) = \underset{a_t \in \mathcal{A}}{\arg\min} \ Q_{\hat{\theta}}\left(s_t, a_t\right)$$

Appendix 2:Complete results of helicopter evaluation

Dataset of canyons

Fills up entire canyon

Local Minima at sharp turn

Sticks to middle of canyon

Appendix 3: SalL algorithm steps

Appendix 4: Model-free policy guides planner

INFLATED EUCLIDEAN HEURISTIC

Heuristic gets trapped in 'bug trap' due to greediness

Heuristic is not greedy enough and expands more states

LEARNT HEURISTIC POLICY

Worlds with 'bug traps'

Worlds with paths around centre line

Heuristic greedily searches around centre line

Heuristic does not get trapped,

Appendix 5: Learning Heuristics via Behavior Cloning

Suffers from distribution mismatch problem

Sampled problem instance(s)

White – Nodes expanded Black – Invalid neighbors Oracle expands nodes only along least effort path Data collected on Oracle's state distribution Learner makes mistake and gets lost

Appendix 6: Iterative learning with dataset aggregation

Train on distribution of states encountered by learner (Ross et al., 2011)

White – Nodes expanded Black – Invalid neighbors Reduce mixing and iterate

Appendix 7: Heuristics as distance metrics

Relaxation based approaches eg. max(Dubin's, 2d Dijkstra) (Likachev et. al, 2009)

Goal state

Schedule heuristics efficiently (MHA*, Aine et al.)

Problems

- 1. Estimating distance metrics can be difficult
- 2. Minimizing estimation error does not necessarily minimize search effort

Imitation Learning with cost-to-go

When faced with multiple seemingly good actions (as in search), learning policy from optimal demonstrations (0-1 loss) is hard.

Solution: Learn Q-value instead! (AGGREVATE, Ross et al., 2014)

SaIL adapts behavior of search in response to change in $P(\phi)$

