
Learning Heuristic Search via Imitation

Mohak Bhardwaj, Sanjiban Choudhury, Sebastian Scherer

1

Real-time planning for fast UAVs

2

Different planners do well on different scenarios

Local
trajectory

optimization
(Ratliff et al.)

Tower

HillsInformed
sampling in

RRT*
(Gammel et al.)

3

Can’t we use a single versatile planner?

Optimal planners, by ignoring context, are unable to succeed in real-time

Wires and
no-fly-zones

Start

Planner
wastes time

checking
unlikely edges

4

Historically, focus has been on worst-case

Computational
complexity and
completeness
(Canny, 1988)

Probabilistic
completeness
(Kuffner and

LaValle, 2000)

Asymptotic
optimality

(Karaman and
Frazolli, 2010) 5

The case for data-driven planning

We should care about the expected performance of planners
on the distribution of problems the robot actually encounters

Distribution of problems

Train
Planning

Parameters
Planner

We focus on the sub-problem
of learning data-driven

heuristics for graph search 6

1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Outline

7

1. Motivation: Why do we need heuristics in graph search?

2.

3.

4.

Outline

8

Graphs are excellent representations that
allow generalization across domains

7D robot arm planning
(Dellin and Srinivasa, 2016)

Non-holonomic path planning
(Our domain)

AlphaGo
(Silver et al., 2016)

Vertices: States of
the robot

Edges: Dynamically
feasible connections 9

Search
Algorithm

World,

Path ξ(vs, vg)HEURISTIC

A heuristic guides the search tree

10

Heuristics should minimize edge evaluations

Online edge evaluation is the computational bottleneck in planning

Check robot mesh against all
object meshes in environment

3.2.4 Example algor ithm 2: 3D sparse visibility graph (SPARTAN-Lite)

Consider the scenario of amicro aerial vehicle (MAV) flying in outdoor unstructured environment

as shown in Fig. 3.5. Such environments have obstacle clusters, such as trees or buildings that the

robot is required to fly around without significant deviations. It is desirable for the optimal path to

“bend” smoothly around obstacles as it joins start and goal states.

TREE
ROBOT

GOAL

START

TREE

SPARSE OBSTACLE

CLUSTERS

(a) (b) (c)

Figure 3.5: Planning problems encountered by amicro aerial vehicle (MAV) flying outdoors (a) TheMAV isexpected

to fly around trees that occur in clusters (b) A close up of the MAV avoiding a tree (c) The robot’s perspective shows

a cluster of obstacles. It creates a sparse graph (blue) that bends around obstacles and contains a high quality solution

(green) that can be uncovered easily

v
vpred

n̂̂n

xix

z

v

x

y

xi

δ

(a) (b) (c)
Obstacles

Tangent

Filter

P lanar

Filter

SPARTANLite

Graph

Figure 3.6: Illustration of SPARTAN-Lite algorithm (a) An example of the sparse tangential network created by

SPARTAN-Lite. Only the incoming edges for expanded vertices are shown in blue. (b) The tangent filter projects

edges on the plane containing the normal to the obstacle surface. It only allows outgoing edges that bend towards

obstacle upto a threshold. (c) The planar filter projects edges on the plane perpendicular to the normal and allows

outgoing edges that have a bounded deviation

We present an approach, SPARTAN-Lite (Nuske, Choudhury et al. [136]), to approximate 3D

visibility graphs which are NP-Hard in general (Canny [25]). Leveraging incremental approaches

to calculate distance fields from occupancy grids [112], we spawn vertices on a manifold on the

surface of obstacles (Cover et al. [42]). Exploiting properties of geodesics on smooth manifolds,

33

Check UAV volume against
occupancy grid / point cloud

The key to real-time performance is minimizing online edge evaluations11

Objective: Find a feasible path while
minimizing edge evaluation

We want to compute a heuristic policy that
explicitly minimizes expected edge evaluation

Finding a feasible path in real-time suffices for now

Can be extended to incorporate path cost in an anytime framework:
Find a feasible path quickly and refine over time

12

1.

2. Problem Formulation: Search as sequential decision making

3.

4.

Outline

13

General framework for SEARCH

is accessible to search only via

collision checks i.e

evaluates utility of each

using heuristic function

14

Key Insight: Search as sequential decision
making under uncertainty(over World map)

State

Action

Reward

Transition
Model

Induced by
underlying world

15

Heuristics as policies

Classifier that maps state of search to node to expand (from Open).

Optimal policy explicitly minimizes planning effort.

At timestep
t

Heuristic Policy
, ,

.

.

.

.

.

.

.

.

.

16

Related Work

Learning heuristics
for planning

Deep Learning for
planning

Imitation Learning
of oracles

Heuristics using supervised
learning techniques

Non i.i.d supervised learning
from oracle demonstrations
under own state distribution

Ross et. al, 2011, 2014

Choudhury et. al, 2017

Incorporating long term
deliberation in reinforcement
learning and deep learning

agents

Zhang et. al, 2016

Kahn et. al, 2014

Tamar et. al, 2016

Yoon et. al, 2006

Xu et. al, 2007, 2009, 2010

Thayer et. al, 2011

Garrett et. al, 2016

Aine et. al, 2015

Gupta et. al, 2017

Gao et. al, 2017

Chang et. al, 2015

Sun et. al, 2017

17

1.

2.

3. Approach: Training heuristic policies via imitation learning

4.

Outline

18

Representing search state
Compress search state to get for each

Note: Feature calculation should not expend extra search effort!

Search based: Depend on the current status of the search tree

Vertex location in world Euclidean distance to goal

Vertex location in world Manhattan distance to goal

Cost of shortest path to start Vertex depth in tree

World based: Depend on environment uncovered so far

Coordinates and location of closest node in

Coordinates and location of closest node in in x-coordinate

Coordinates and location of closest node in in y-coordinate

19

Model-free reinforcement learning is slow
to converge

Large state and action spaces; Sparse reward

Input problem Poor rollout with learner
White – Nodes Expanded

Start

Goal

Start

Goal

20

But we can do better!

Key Insight: Construct an optimal oracle using dynamic
programming. (backward Dijkstra’s algorithm)

Oracle is “clairvoyant” with access to true state of underlying world.(Choudhury et al., 2017)

Solves full problem to get
true expansions-to-go

Approximates search effort
from belief

Learner

IMITATION

Oracle

Start

Goal

21

Planner follows greedy policy with respect to search effort

Learn a function approximator for the oracle’s Q value

Uniformly sampled time-step

Distribution of states under
roll-in policy

Oracle label

Imitation Learning with cost-to-go

22

Uniformly sampled time-step
Oracle label

Reduction to no-regret online learning

Problem:

Using oracle to

roll-in leads to

distribution mismatch

Solution:

Iterative learning, roll-in with

mixture of oracle + learner,

dataset aggregation
(Ross and Bagnell, 2014)

Distribution of states under
roll-in policy

Learn a function approximator for the oracle’s Q value

23

Search As Imitation Learning

Repeat above steps to train N policies

1

Sample
problem

Repeat steps (2-3) at k uniformly sampled steps

Run m episodes in every iteration

Train on aggregated dataset

Return best on validation

Roll-in mixture;
choose random action;

collect

2

Query oracle
for

3

24

1.

2.

3.

4. Evaluation: Benchmark datasets, case studies, flight tests

Outline

25

Benchmark experiments: Setup

, ,

Extract
Features

Q network

8 different databases of 2D planning problems of varying complexity.

World: bitmap of obstacles and free space. Size: 200mx200m

Start and goal fixed across problems(bottom-left to top-right).

Graph, : 1m resolution and 8-connected neighbors.

[100,50] units with ReLu

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

26

Code

Code and details: https://mohakbhardwaj.github.io/SaIL/

Benchmark experiments: Baselines

Machine Learning Baselines:

1. Behavior Cloning

2. Reinforcement Learning – C.E.M and Q-Learning.

Motion Planning Baselines:
1. Greedy search with Euclidean heuristic (hEUC)

2. Greedy search with Manhattan heuristic (hMAN)

3. MHA* ([hEUC, hMAN, dOBS])

All results shown are after 15 iterations of , training on 200 environments per iteration. Behavior
Cloning trains on 600 environments 27

SaIL has competitive performance across all datasets

28

SaIL is able to exploit relative configuration of obstacles and
environment structure.

Dataset Greedy
(hEUC)

Behavior
Cloning

Gaps+Forest

Mazes

29

SaIL is able to detect and escape local minima

Dataset Greedy
(hEUC)

Behavior
Cloning

Single Bug-
trap

Multiple Bug-
traps

30

SaIL has faster convergence than all learning baselines

Converges fast consistently
across environments

Converges way faster than
model free RL 31

Current Work: Evaluation on helicopter planning

Dataset of canyons
(in simulation)

A*
(w=1)

Fills up
entire canyon

Sticks to
middle of
canyon

2532 expansions, 700ms

18 expansions, 100ms 32

Current Work: Evaluation on an UAV
flying in complex environments

UAV has to fly at high speeds (5 - 15 m/s) and avoid no-fly-zones
(other aircrafts / above building) that create complex environments

No-fly-zones

33

(a) (b)

(c) (d)

(e) (f)

(g)

Time: 0 sec Time: 7 sec Time: 19 sec

Evaluation on an UAV flying in
complex environments
(Left) SaIL trained on
dataset of mazes in
simulation. (Below)
Tested on a real maze
with planning onboard

(Left) A* expands
1910 states (1000
ms). (Below) SaIL
expands 180 states
(120 ms)

34

Summary

Anytime Planning
Try to incorporate solution cost

into heuristic training
procedure.(Densification Strategies for

Anytime Motion Planning over Large
Dense Roadmaps, Choudhury et al, 2017)

Key Takeaways

Future Work

Recurrent architectures
Exploit the temporal structure

of the problem and reduce
dependence on features. (Deeply

AggreVaTeD, Sun et. al, 2017)

IMITATION

Generating data for training

Microsoft AirSim 35

Code

Appendix 1: Cost-Sensitive Imitation
Learning

Learner’s misclassification weighted by Oracle’s Q-value (Ross et al., 2014):

- Oracle label for optimal number of expansions left

- Optimal oracle policy

- Distribution of states induced by rolling-in with mixture policy

Cost-sensitive classification loss

36

Use reduction of c.s classification to regression

Planner greedily chooses node with least expected search effort

37

Appendix 2:Complete results of helicopter
evaluation

Dataset of canyons

A*
(w=1)

A*
(w=3)

Fills up
entire
canyon

Local
Minima at
sharp turn

Sticks to
middle of
canyon

38

Appendix 3: SaIL algorithm steps

1 2

Sample a world

4 3

Repeat steps(1-3)
to add km samples

Repeat steps (1-4)
to train N policies

Roll-in mixture policy;
choose random action;

collect

Query oracle planner
for

Aggregate data,
update policy
and repeat 39

Appendix 4: Model-free policy guides planner

41

Appendix 5: Learning Heuristics via
Behavior Cloning

Suffers from distribution mismatch problem

Sampled problem
instance(s)

Learn
Policy

Oracle expands
nodes only along
least effort path

Data collected on
Oracle’s state
distribution

Learner makes
mistake and gets

lost
White – Nodes expanded
Black – Invalid neighbors 42

Train on distribution of states encountered by learner (Ross et al., 2011)

Reduce mixing and iterate

Appendix 6: Iterative learning with
dataset aggregation

Collect data using
mixture of learner +

oracle

Sampled problem
instance(s)

White – Nodes expanded
Black – Invalid neighbors

Update policy using
no-regret learning

procedure

Aggregate data
with previously
collected data

43

Relaxation based approaches
eg. max(Dubin’s, 2d Dijkstra)

(Likachev et. al, 2009)

Schedule heuristics efficiently
(MHA*, Aine et al.)

Problems
1. Estimating distance metrics can be difficult

2. Minimizing estimation error does not necessarily minimize search effort

Appendix 7: Heuristics as distance metrics

44

Imitation Learning with cost-to-go
When faced with multiple seemingly good actions (as in search), learning policy from

optimal demonstrations (0-1 loss) is hard.

Solution: Learn Q-value instead!(, Ross et al., 2014)

Reduce mixing and iterate

Sampled problem
instance(s)

Roll-in mixture policy to
uniformly sampled timestep ;

choose action

Aggregate data and
update policy as before

Query/roll-out oracle
to get

45

Dataset Greedy
(hEUC)

Behavior
Cloning

Alternating gaps:

gap 70% at bottom and
30% at top

Shifting gaps:

gap uniformly distributed
vertically

SaIL adapts behavior of search in response
to change in

46

