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Real-time planning for fast UAVs
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Different planners do well on different scenarios

Local 
trajectory

optimization 
(Ratliff et al.) 

Tower

HillsInformed 
sampling in 

RRT*
(Gammel et al.) 
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Can’t we use a single versatile planner?

Optimal planners, by ignoring context, are unable to succeed in real-time

Wires and 
no-fly-zones

Start

Planner
wastes time 

checking 
unlikely edges
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Historically, focus has been on worst-case

Computational 
complexity and 
completeness
(Canny, 1988)

Probabilistic 
completeness
(Kuffner and 

LaValle, 2000)

Asymptotic 
optimality

(Karaman and 
Frazolli, 2010) 5



The case for data-driven planning

We should care about the expected performance of planners
on the distribution of problems the robot actually encounters

Distribution of problems

Train 
Planning 

Parameters
Planner

We focus on the sub-problem 
of learning data-driven 

heuristics for graph search 6



1. Motivation: Why do we need heuristics in graph search?

2. Problem Formulation: Search as sequential decision making

3. Approach: Training heuristic policies via imitation learning

4. Evaluation: Benchmark datasets, case studies, flight tests

Outline
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1. Motivation: Why do we need heuristics in graph search?

2.

3.

4.

Outline
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Graphs are excellent representations that 
allow generalization across domains

7D robot arm planning
(Dellin and Srinivasa, 2016)

Non-holonomic path planning
(Our domain)

AlphaGo
(Silver et al., 2016)

Vertices: States of 
the robot 

Edges: Dynamically 
feasible connections 9



Search 
Algorithm

World, 

Path  ξ(vs, vg)HEURISTIC

A heuristic guides the search tree
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Heuristics should minimize edge evaluations

Online edge evaluation is the computational bottleneck in planning

Check robot mesh against all 
object meshes in environment

3.2.4 Example algor ithm 2: 3D sparse visibility graph (SPARTAN-Lite)

Consider the scenario of amicro aerial vehicle (MAV) flying in outdoor unstructured environment

as shown in Fig. 3.5. Such environments have obstacle clusters, such as trees or buildings that the

robot is required to fly around without significant deviations. It is desirable for the optimal path to

“bend” smoothly around obstacles as it joins start and goal states.

TREE
ROBOT

GOAL

START

TREE

SPARSE OBSTACLE

CLUSTERS

(a) (b) (c)

Figure 3.5: Planning problems encountered by amicro aerial vehicle (MAV) flying outdoors (a) TheMAV isexpected

to fly around trees that occur in clusters (b) A close up of the MAV avoiding a tree (c) The robot’s perspective shows

a cluster of obstacles. It creates a sparse graph (blue) that bends around obstacles and contains a high quality solution

(green) that can be uncovered easily
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Figure 3.6: Illustration of SPARTAN-Lite algorithm (a) An example of the sparse tangential network created by

SPARTAN-Lite. Only the incoming edges for expanded vertices are shown in blue. (b) The tangent filter projects

edges on the plane containing the normal to the obstacle surface. It only allows outgoing edges that bend towards

obstacle upto a threshold. (c) The planar filter projects edges on the plane perpendicular to the normal and allows

outgoing edges that have a bounded deviation

We present an approach, SPARTAN-Lite (Nuske, Choudhury et al. [136]), to approximate 3D

visibility graphs which are NP-Hard in general (Canny [25]). Leveraging incremental approaches

to calculate distance fields from occupancy grids [112], we spawn vertices on a manifold on the

surface of obstacles (Cover et al. [42]). Exploiting properties of geodesics on smooth manifolds,

33

Check UAV volume against 
occupancy grid / point cloud 

The key to real-time performance is minimizing online edge evaluations11



Objective: Find a feasible path while 
minimizing edge evaluation

We want to compute a heuristic policy that 
explicitly minimizes expected edge evaluation

Finding a feasible path in real-time suffices for now

Can be extended to incorporate path cost in an anytime framework: 
Find a feasible path quickly and refine over time
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1.

2. Problem Formulation: Search as sequential decision making

3.

4.

Outline
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General framework for SEARCH

is accessible to search only via 

collision checks i.e

evaluates utility of each            

using heuristic function
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Key Insight: Search as sequential decision 
making under uncertainty(over World map)

State

Action 

Reward  

Transition 
Model

Induced by 
underlying world 
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Heuristics as policies

Classifier that maps state of search to node to expand (from Open).

Optimal policy explicitly minimizes planning effort.

At timestep 
t

Heuristic Policy
, ,

.

.

.

.

.

.

.

.

.
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Related Work

Learning heuristics 
for planning

Deep Learning for 
planning

Imitation Learning 
of oracles

Heuristics using supervised
learning techniques

Non i.i.d supervised learning 
from oracle demonstrations 
under own state distribution

Ross et. al, 2011, 2014

Choudhury et. al, 2017

Incorporating long term 
deliberation in reinforcement 
learning and deep learning 

agents

Zhang et. al, 2016

Kahn et. al, 2014

Tamar et. al, 2016

Yoon et. al, 2006

Xu et. al, 2007, 2009, 2010

Thayer et. al, 2011

Garrett et. al, 2016

Aine et. al, 2015

Gupta et. al, 2017

Gao et. al, 2017

Chang et. al, 2015

Sun et. al, 2017
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1.

2.

3. Approach: Training heuristic policies via imitation learning

4.

Outline
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Representing search state
Compress search state                   to get    for each 

Note: Feature calculation should not expend extra search effort!

Search based: Depend on the current status of the search tree

Vertex location in world Euclidean distance to goal

Vertex location in world Manhattan distance to goal

Cost of shortest path to start Vertex depth in tree

World based: Depend on environment uncovered so far

Coordinates and location of closest node in 

Coordinates and location of closest node in    in x-coordinate

Coordinates and location of closest node in    in y-coordinate
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Model-free reinforcement learning is slow 
to converge

Large state and action spaces; Sparse reward

Input problem Poor rollout with learner
White – Nodes Expanded

Start

Goal

Start

Goal
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But we can do better!

Key Insight: Construct an optimal oracle using dynamic 
programming. (backward Dijkstra’s algorithm)

Oracle is “clairvoyant” with access to true state of underlying world.(Choudhury et al., 2017)

Solves full problem to get 
true expansions-to-go

Approximates search effort 
from belief

Learner

IMITATION

Oracle

Start

Goal
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Planner follows greedy policy with respect to search effort

Learn a function approximator for the oracle’s Q value

Uniformly sampled time-step

Distribution of states under 
roll-in policy 

Oracle label

Imitation Learning with cost-to-go
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Uniformly sampled time-step
Oracle label

Reduction to no-regret online learning

Problem:

Using oracle to

roll-in leads to 

distribution mismatch

Solution:

Iterative learning, roll-in with

mixture of oracle + learner,

dataset aggregation 
(Ross and Bagnell, 2014)

Distribution of states under 
roll-in policy 

Learn a function approximator for the oracle’s Q value
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Search As Imitation Learning 

Repeat above steps to train N policies

1

Sample
problem

Repeat steps (2-3) at k uniformly sampled steps

Run m episodes in every iteration

Train         on aggregated dataset

Return best    on validation 

Roll-in mixture;
choose random action;

collect

2

Query oracle
for 

3
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1.

2.

3.

4. Evaluation: Benchmark datasets, case studies, flight tests

Outline
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Benchmark experiments: Setup  

, ,

Extract 
Features

Q network

8 different databases of 2D planning problems of varying complexity. 

World: bitmap of obstacles and free space. Size: 200mx200m 

Start and goal fixed across problems(bottom-left to top-right).

Graph,               : 1m resolution and 8-connected neighbors. 

[100,50] units with ReLu

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Code

Code and details: https://mohakbhardwaj.github.io/SaIL/ 



Benchmark experiments: Baselines

Machine Learning Baselines:

1. Behavior Cloning 

2. Reinforcement Learning – C.E.M and Q-Learning.

Motion Planning Baselines:
1. Greedy search with Euclidean heuristic (hEUC)

2. Greedy search with Manhattan heuristic (hMAN)

3. MHA* ([hEUC, hMAN, dOBS])

All results shown are after 15 iterations of        , training on 200 environments per iteration. Behavior 
Cloning trains on 600 environments 27



SaIL has competitive performance across all datasets
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SaIL is able to exploit relative configuration of obstacles and 
environment structure.

Dataset Greedy 
(hEUC)

Behavior 
Cloning

Gaps+Forest

Mazes
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SaIL is able to detect and escape local minima

Dataset Greedy 
(hEUC)

Behavior 
Cloning

Single Bug-
trap

Multiple Bug-
traps
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SaIL has faster convergence than all learning baselines

Converges fast consistently
across environments

Converges way faster than 
model free RL 31



Current Work: Evaluation on helicopter planning

Dataset of canyons
(in simulation)

A* 
(w=1)

Fills up 
entire canyon

Sticks to 
middle of 
canyon 

2532 expansions, 700ms

18 expansions, 100ms 32



Current Work: Evaluation on an UAV 
flying in complex environments

UAV has to fly at high speeds (5 - 15 m/s) and avoid no-fly-zones 
(other aircrafts / above building) that create complex environments

No-fly-zones
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(a) (b)

(c) (d)

(e) (f)

(g)

Time: 0 sec Time: 7 sec Time: 19 sec

Evaluation on an UAV flying in 
complex environments
(Left) SaIL trained on 
dataset of mazes in 
simulation. (Below) 
Tested on a real maze 
with planning onboard

(Left) A* expands 
1910 states (1000 
ms). (Below) SaIL
expands 180 states 
(120 ms)
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Summary

Anytime Planning
Try to incorporate solution cost 

into heuristic training 
procedure.(Densification Strategies for 

Anytime Motion Planning over Large 
Dense Roadmaps, Choudhury et al, 2017)

Key Takeaways

Future Work

Recurrent architectures
Exploit the temporal structure 

of the problem and reduce 
dependence on features. (Deeply 

AggreVaTeD, Sun et. al, 2017)

IMITATION

Generating data for training

Microsoft AirSim 35

Code



Appendix 1: Cost-Sensitive Imitation 
Learning

Learner’s misclassification weighted by Oracle’s Q-value (Ross et al., 2014):

- Oracle label for optimal number of expansions left 

- Optimal oracle policy

- Distribution of states induced by rolling-in with mixture policy 

Cost-sensitive classification loss
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Use reduction of c.s classification to regression

Planner greedily chooses node with least expected search effort
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Appendix 2:Complete results of helicopter 
evaluation

Dataset of canyons

A* 
(w=1)

A* 
(w=3)

Fills up 
entire 
canyon

Local 
Minima at 
sharp turn

Sticks to 
middle of 
canyon 
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Appendix 3: SaIL algorithm steps

1 2

Sample a world

4 3

Repeat steps(1-3) 
to add km samples

Repeat steps (1-4) 
to train N policies

Roll-in mixture policy;
choose random action;

collect

Query oracle planner
for 

Aggregate data,
update policy
and repeat 39



Appendix 4: Model-free policy guides planner
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Appendix 5: Learning Heuristics via 
Behavior Cloning

Suffers from distribution mismatch problem

Sampled problem 
instance(s)

Learn 
Policy

Oracle expands 
nodes only along 
least effort path

Data collected on 
Oracle’s state 
distribution

Learner makes 
mistake and gets 

lost
White – Nodes expanded
Black – Invalid neighbors 42



Train on distribution of states encountered by learner (Ross et al., 2011)

Reduce mixing and iterate

Appendix 6: Iterative learning with 
dataset aggregation

Collect data using 
mixture of learner + 

oracle

Sampled problem 
instance(s)

White – Nodes expanded
Black – Invalid neighbors

Update policy using 
no-regret learning 

procedure

Aggregate data 
with previously 
collected data
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Relaxation based approaches 
eg. max(Dubin’s, 2d Dijkstra)

(Likachev et. al, 2009)

Schedule heuristics efficiently 
(MHA*, Aine et al.)

Problems
1. Estimating distance metrics can be difficult

2. Minimizing estimation error does not necessarily minimize search effort

Appendix 7: Heuristics as distance metrics
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Imitation Learning with cost-to-go
When faced with multiple seemingly good actions (as in search), learning policy from 

optimal demonstrations (0-1 loss) is hard.

Solution: Learn Q-value instead!(                  , Ross et al., 2014)

Reduce mixing and iterate

Sampled problem 
instance(s)

Roll-in mixture policy to 
uniformly sampled timestep ;

choose action

Aggregate data and 
update policy as before

Query/roll-out oracle 
to get
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Dataset Greedy 
(hEUC)

Behavior 
Cloning

Alternating gaps: 

gap 70% at bottom and 
30% at top

Shifting gaps:

gap uniformly distributed 
vertically

SaIL adapts behavior of search in response 
to change in 
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