ﬁ

air lab T
Learning Heuristic Search via Imitation

Mohak Bhardwaj, Sanjiban Choudhury, Sebastian Scherer

7 gk

Real-time planning for fast UAVs

Different planners do well on different scenarios

Local Goal Informed o
trajectory ' - sampling in I 7 Goal
optimization RRT*

(Ratliff et al.) (Gammel et al.)

2 Current: 0.73 Max: 0.8 |
.9

0.8

Can’t we use a single versatile planner?

Optimal planners, by ignoring context, are unable to succeed in real-time

Wires and
no-fly-zones

Planner
wastes time
checking
unlikely edges

Historically, focus has been on worst-case

B 2 !

o 7 % a

ACM Doctoral Dissertation 5 @
Award 1987 ! g
'\ |

The Complexity of
Robot Motion Planning
John F. Canny

s 25)

SEAa

e

Computational Probabilistic Asymptotic
complexity and completeness optimality
completeness (Kuffner and (Karaman and

(Canny, 1988) LaValle, 2000) Frazolli, 2010) 0

The case for data-driven planning

We should care about the expected performance of planners
on the distribution of problems the robot actually encounters

Distribution of problems

Train
—_ P]anning —_— Planner

Parameters

We focus on the sub-problem
of learning data-driven
heuristics for graph search

Outline

Motivation: Why do we need heuristics in graph search?
Problem Formulation: Search as sequential decision making
Approach: Training heuristic policies via imitation learning

Evaluation: Benchmark datasets, case studies, flight tests

-3

Outlhline

Motivation: Why do we need heuristics in graph search?
Problem Formulation: Search as sequential decision making
Approach: Training heuristic policies via imitation learning

Evaluation: Benchmark datasets, case studies, flight tests

Graphs are excellent representations that
allow generalization across domains

(—t"-:"$) «£‘+
p o 3

081
Non-holonomic path planning 7D robot arm planning AlphaGo
(Our domain) (Dellin and Srinivasa, 2016) (Silver et al., 2016)

G = (V,E)

Vertices: States of Edges: Dynamically
the robot feasible connections

A heuristic guides the search tree

D [World®

HEURISTIC

Search
Algorithm

190 -
180
170 -
160 -
150 i [[][]
140 -
' 1
130 - o
120 i
H
100 - .
90 A -
|||
?g] 11
LI R e e N || [| [| | | |
gall EENEENE
40
30
20 1
10
0

T T T T T T T T T T T T T T T T T T T
0102030405060708090100102030405060Q70280390

Path &(v,, vg)

10

Heuristics should minimize edge evaluations

Online edge evaluation is the computational bottleneck in planning

e Ly
Check robot mesh against all Check UAV volume against
object meshes in environment occupancy grid / point cloud

The key to real-time performance is minimizing online edge evaluations;

Objective: Find a feasible path while
minimizing edge evaluation

We want to compute a heuristic policy that
explicitly minimizes expected edge evaluation

Finding a feasible path in real-time suffices for now

Can be extended to incorporate path cost in an anytime framework:
Find a feasible path quickly and refine over time

12

Outline

Motivation: Why do we need heuristics in graph search?
Problem Formulation: Search as sequential decision making
Approach: Training heuristic policies via imitation learning

Evaluation: Benchmark datasets, case studies, flight tests

13

General framework for SEARCH

Search(vs, vy, Succ, Eval, ¢, Select)

O+—vg, C—0, T« 0
while v, ¢ O:

v < Select (O)

(I/succa Einv) < Expand ('U, Succ, Eval, Qﬁ)

O+ 0UViee, CCUv, T+ TUE,

Return Path (v, v,)

Open List | | Invalid List
(@) N (Z)

~J]
Start(vs)—l ¥

'S
I — Goal (vy)
L]

/
Closed List World Map
) = (9)

Select (O) evaluates utility of each v € O
using heuristic function

¢ is accessible to search only via
collision checks i.e Eval (¢)

14

Key Insight: Search as sequential decision
making under uncertainty(over World map)

(Select (v e (’)ﬂ) State St (O, Ct, 1y)
/ \ Action at Select (v € O,)
Environment Reward 7¢ 0 if v, € O,
Planner Expand (v, Succ, Eval, ¢) :
T —1 otherwise
\ / World ¢ Transition Induced by
Model underlying world
@f-Fl'-CH'-'-IH]}’rHD P (st41 | stya4) [0 NyPg(qﬁ)

Heuristics as policies

Classifier that maps state of search to node to expand (from Open).

vol Ucl E?l
Vo2 Ve2 E;o
At timestep : ’ : ’ : —_— Heuristic Policy »v e O
" . . .
UoN VeM E i
O C 7

Optimal policy explicitly minimizes planning effort.

16

Learning heuristics
for planning

Heuristics using supervised
learning techniques

Yoon et. al, 2006
Xu et. al, 2007, 2009, 2010
Thayer et. al, 2011

Garrett et. al, 2016

Related Work

Deep Learning for
planning

\ / Incorporating long term\ /

deliberation in reinforcement
learning and deep learning
agents

Zhang et. al, 2016
Kahn et. al, 2014
Tamar et. al, 2016

Gupta et. al, 2017
Gao et. al, 2017

Imitation Learning
of oracles

Non i.i.d supervised learning
from oracle demonstrations
under own state distribution

Ross et. al, 2011, 2014
Chang et. al, 2015
Sun et. al, 2017

Choudhury et. al, 2017

Aine et. al, 2015

/

_ /

_ /

17

Outline

Motivation: Why do we need heuristics in graph search?
Problem Formulation: Search as sequential decision making
Approach: Training heuristic policies via imitation learning

Evaluation: Benchmark datasets, case studies, flight tests

18

Representing search state

Compress search state s; = (O, Ct,Z;) to get f; for each v € O,

Search based: Depend on the current status of the search tree
(%y,y») | Vertex location in world hrye | Euclidean distance to goal
(20, Yv,) | Vertex location in world hyay | Manhattan distance to goal
Gv Cost of shortest path to start drrer | Vertex depth in tree

World based: Depend on environment uncovered so far

(Zops, Yos, dops) | Coordinates and location of closest node in Z
(Zomsxs Yomsxs donsx)| Coordinates and location of closest node in 7 in x-coordinate
(Tomsy, Yossy» dossy)| Coordinates and location of closest node in 7 in y-coordinate

Note: Feature calculation should not expend extra search effort!
19

Model-free reinforcement learning is slow

to converge

Gl

T+

St(

W1t

Input problem

St

't

Poor rollout with learner

White — Nodes Expanded

Large state and action spaces; Sparse reward

20

But we can do better!

Key Insight: Construct an optimal oracle using dynamic
programming. (backward Dijkstra’s algorithm)

Learner Oracle

J‘roajll B

:E IMITATION
I

Ll
o5

Skalrt

Approximates search effort Solves full problem to get
from belief

Oracle is “clairvoyant” with access to true state of underlying world.(Choudhury et al., 2017

21

Imitation Learning with cost-to-go

Learn a function approximator for the oracle’s Q value

1 . : 2
SLS) t~U(1...T)

Uniforml led time-st s~vd:
nirormly sampled time-step s~d_ Oracle label

Distribution of states under
roll-in policy 7

Planner follows greedy policy with respect to search effort

(s¢) = argmin Q(; (8¢, a)
a; €A

[\
[\

Reduction to no-regret online learning

Learn a function approximator for the oracle’s QQ value

1 . : 2
SLS) t~U(1...T)

Uniforml led time-ste se~d:
nitormly sampled tim b s~d_ Oracle label

Distribution of states under
roll-in policy =

Problem: Solution:
Using oracle to :> [terative learning, roll-in with
roll-in leads to mixture of oracle + learner,
distribution mismatch dataset aggregation
(Ross and Bagnell, 2014)

Search As Imitation Learning (5AIL)

Run m episodes in every iteration : =1... N
L e
1 (2) 3

Pl e

11,
I

Roll-in mixture;
choose random action;
collect (O, Ci,Z;, ve)

Sample
problem

Query oracle
for QOF (v, ¢)

D+ DU <"Ut, St, QOR>
Repeat steps (2-3) at k uniformly sampled steps
Train Ti+1 on aggregated dataset D

Repeat above steps to train N policies 71 ... 7N

Return best m; on validation

Outline

Motivation: Why do we need heuristics in graph search?
Problem Formulation: Search as sequential decision making
Approach: Training heuristic policies via imitation learning

Evaluation: Benchmark datasets, case studies, flight tests

25

Benchmark experiments: Setup %
O™

8 different databases of 2D planning problems of varying complexity. Code

World: bitmap of obstacles and free space. Size: 200mx200m
Start and goal fixed across problems(bottom-left to top-right).

Graph, G = (V, E): 1m resolution and 8-connected neighbors.

Q network
Vo1 Vel Ei fol
Vo2 Ve2 E;s
; J f L,
: Extract
VoN veM Eex)| Peatures fon
O C Z [100,50] units with ReLu

Code and details: https://mohakbhardwaj.github.io/SalL/

Benchmark experiments: Baselines

Motion Planning Baselines:
1. Greedy search with Euclidean heuristic (g

2. Greedy search with Manhattan heuristic (h,,,y)
3. MHA™ ([hgyes haran, dopsl)

Machine Learning Baselines:

1. Behavior Cloning
2. Reinforcement Learning — C.E.M and Q-Learning.

All results shown are after 15 iterations of SAIL, training on 200 environments per iteration. Behavior
Cloning trains on 600 environments 5

-3

SalLL has competitive performance across all datasets

Dataset Sample Worlds SAIL SL CEM QL heuc hman A* MHA*

Alternating Gaps I 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000

Single Bugtrap M 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286

Shifting Gaps 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804

—i5
- -
—

Forest R Rh WM 0036 0043 0048 0121 0041 0.043 1000 0.075
Bugtrap+Forest [3]f| TA| 7]y 047 0384 0182 1000 0410 0337 1000 0.467
Gaps-+ Forest Iﬂ HI @ 0.221 1.000 1.000 1000 1000 1.000 1.000 1.000

Mazes H| T A 0.103 0238 0479 0399 0185 0171 1.000 0.279

-

Multiple Bugtraps 0.479 0.480 1.000 0.835 0.648 0.617 1.000 0.876

—1
L |
-
=,
=
1

SalL is able to exploit relative configuration of obstacles and
environment structure.

Dataset Greedy Behavior
(hgue) Cloning

"

Gaps+Forest ||« =

Mazes

SalL is able to detect and escape local minima

Dataset Greedy Behavior SAIL
(hgue) Cloning
Single Bug- M
trap [l
T —
Multiple Bug-
aans |1 .BEbR
Rilninin

SalLL has faster convergence than all learning baselines

Average Number of Expansions on Validation

100009 —— forest
gaps+forest
—— maze world
8000
6000
4000
2000
0 B T T T T T T T T T
0 5 10 15 20 25 30 35 40

lterations

Average Number of Expansions on Validation

10000 4

w
(=]
(=]
(=]

=]
(=]
[=]
[=]

B
o
(=]
(=]

[¥]
(=]
=]
(=]

—— forest
forest(C.E.M)
—— forest(Q Learning)
T T T T T T T T T
0 5 10 15 20 25 30 35 40
lterations

Converges fast consistently
across environments

Converges way faster than
model free RL 31

Current Work: Evaluation on helicopter planning

Dataset of canyons
(in simulation)

A* :
(w—1) Fills up
entire canyon
Sticks to
SAIL middle of
canyon

32

18 expansions, 100ms

Current Work: Evaluation on an UAV
flying in complex environments

UAYV has to fly at high speeds (5 - 15 m/s) and avoid no-fly-zones
(other aircrafts / above building) that create complex environments

Evaluation on an UAV flying in
complex environments

(Left) SalLi trained on

E dataset of mazes in

(Left) A* expands
1910 states (1000

ms). (Below) SalL
expands 180 states

simulation. (Below)
Tested on a real maze

ge
nnnnnnnnnnnn

Summary chA

Key Takeaways (=l
Code
Select (v € ()
Environment —
: Planner Expand (v;, Succ, Eval,) f: V' _"
‘—-7==.=.=.=—v:#======= T |l
7Y T T VU &
' World ¢ :
(O41,Cep1, Tegr) e IMITATION
Future Work
Recurrent architectures Anytime Planning Generating data for training

Exploit the temporal structure
of the problem and reduce

dependence on features. (Deeply
AggreVaTeD, Sun et. al, 2017)

;3

Try to incorporate solution cost
into heuristic training

procedure. (Densification Strategies for

Anytime Motion Planning over Large
Dense Roadmaps, Choudhury et al, 2017)

(@)}

Appendix 1: Cost-Sensitive Imitation
Learning

Learner’s misclassification weighted by Oracle’s Q-value (ross et a1, 2014).

T(s) =argmin E 4. p(s) [QCOR (7 (s),0) — min QYR (v, q’))]
mell t~U(1...T) veC

S*‘\JO!T-EF

Cost-sensitive classification loss

Q" (v,¢) - Oracle label for optimal number of expansions left

mcor (81, 0) = argmin [Q°°% (v,¢)] - Optimal oracle policy

ve®
dt

~ - Distribution of states induced by rolling-in with mixture policy 7

36

Use reduction of c.s classification to regression

A _ 2
0 =argmin E ;. p(g) [(Qe (s, ap) — QYOM (v,9))]
0ce t~U(1...T)

s~d.
Planner greedily chooses node with least expected search effort

m(s¢) = argmin Qy (s¢,a¢)
at €A

37

Appendix 2:Complete results of helicopter

evaluation
Dataset of canyons

A* Fills up

(w=1) entire
canyon

A* Local

(W:?)) Minima at
sharp turn
Sticks to

SAIL middle of

canyon

38

Appendix 3: SalL algorithm steps

1

L

—]

Sample a world

@D +~— DU <Ut, St, QOR>

=

Repeat steps(1-3)
to add km samples

Train 7;4; on D

Repeat steps (1-4)
to train N policies

Aggregate data,
update policy
and repeat

G

|
=

Roll-in mixture policy;
choose random action;
collect (0.C.I.v)

Query oracle planner

fOI' QOR (va qf’)

39

Appendix 4: Model-free policy guides planner

INFLATED EUCLIDEAN HEURISTIC
[]

Heuristic gets trapped

in ‘bug trap’ due to greediness

Heuristic is not greedy enough

and expands more states

LEARNT HEURISTIC POLICY

n [|

S || 4]
o [
J i (m =

] | I |
: 2 11
Worlds with Heuristic does not get trapped,

‘bug traps’ searches along periphery

Worlds with paths Heuristic greedily searches
around centre line around centre line

11

Appendix 5: Learning Heuristics via
Behavior Cloning

Suffers from distribution mismatch problem

Lea:rn :
Policy
Sampled problem Oracle expands Data collected on Learner makes
instance(s) nodes only along Oracle’s state mistake and gets
least effort path distribution lost

White — Nodes expanded
Black — Invalid neighbors 19

Appendix 6: Iterative learning with
dataset aggregation

Train on distribution of states encountered by learner (rosset av, 2011)

Aggregate data
with previously

:> collected data

Update policy using
no-regret learning
procedure

Sampled problem (?ollect data using
. mixture of learner +
instance(s)
oracle
A
White — Nodes expanded Reduce mixing and iterate

Black — Invalid neighbors

Appendix 7: Heuristics as distance metrics

v When ¥
,ar\ -
Goal state | (“,

—

Start state

Schedule heuristics efficiently

Relaxation based approaches
eg. max(Dubin’s, 2d Dijkstra) (MHA*, Aine et al.)
(Likachev et. al, 2009)

Problems
1. Estimating distance metrics can be difficult

2. Minimizing estimation error does not necessarily minimize search effort

Imitation Learning with cost-to-go

When faced with multiple seemingly good actions (as in search), learning policy from
optimal demonstrations (0-1 loss) is hard.

Solution: Learn Q-value instead!(accrevare, Ross et al., 2014)

Sampled problem Roll-in mixture policy to Query/roll-out oracle
uniformly sampled timestep ; to get QF (s¢, ax)

mstance(s) choose action ay

T Aggregate data and
Reduce mixing and iterate update policy as before

SallL adapts behavior of search in response

to change in P (¢)

Dataset

Alternating gaps:

gap 70% at bottom and

30% at top

Greedy
(hguo)

Behavior
Cloning

SAIL

Shifting gaps:

gap uniformly distributed

vertically

st

-

16

