Mohak Bhardwaj

☑ mohak.bhardwaj@gmail.com

mohakbhardwaj.github.io

Education

2019-2024 University of Washington, School of Computer Science

Seattle, WA

Ph.D. in Computer Science Advisor: Dr. Byron Boots

2018-2019 Georgia Institute of Technology, College of Computing

Atlanta, GA

Ph.D. student in Robotics Advisor: Dr. Byron Boots

Transferred to University of Washington in September 2019

2015-2016 Carnegie Mellon University, School of Computer Science

Pittsburgh, PA

MS Robotic Systems Development

Advisors: Dr. Sebastian Scherer, Dr. John Dolan

2011-2015 Indian Institute of Technology (BHU), Varanasi

India

B. Tech Mechanical Engineering

Research/Work Experience

Apr 2024-Present Boston Dynamics, Staff Research Scientist

Waltham, MA

- Developing visuomotor policies for dexterous manipulation and agile whole-body control on the ATLAS robot using reinforcement and imitation learning.
- Led the technical development of a collaborative project with NVIDIA, culminating in a high-impact GTC demo and public video release.
- Videos: tinyurl.com/2775e283, tinyurl.com/462x6cpn

Sep 2019-Mar 2024 University of Washington, Graduate Research Assistant

Seattle, WA

Advisor: Dr. Byron Boots

- Offline Reinforcement Learning: Developed an adversarial model-based offline RL framework with strong theoretical guarantees on robust performance improvement.
- Combining Model-based and Model-free Reinforcement Learning: Investigated hybrid methods combining model-predictive control and value function approximation for sample-efficient robot learning with provable reduction in model bias.
- Model-Predictive Control: Built a GPU-accelerated model-predictive control system for fast, reactive and collision free motion generation for robot manipulators using learned cost functions.
- Dynamic Non-prehensile Manipulation: Combined offline value function learning from demonstrations with MPC for real world non-prehensile object transport.

Jun 2022-Dec 2022 Google DeepMind, Research Scientist Intern

London, UK

Mentors: Dr. Jonas Buchli, Dr. Markus Wulfmeier, Dr. Martin Riedmiller

- Developed a model-free RL framework for dynamic, airflow-based control of rigid bodies and deployed it on a real-world fluid dynamic control testbed.
- Explored offline RL to multi-task data re-use and efficient reward design.

Sep 2020-Dec 2020 NVIDIA Research, Robotics Research Intern

Seattle, WA

Mentors: Dr. Dieter Fox, Dr. Byron Boots, Dr. Fabio Ramos, Dr. Balakumar Sundaralingam

- Led the development of STORM, a GPU-accelerated MPC framework enabling fast, reactive and collision free motion generation for robot manipulators with learned cost functions.
- Demonstrated robust performance on dynamic ball balancing, handling task constraints and obstacle avoidance with full joint-space control on a Franka Panda arm. Link: bit.ly/3y73HbW

May 2019-Oct 2019 NVIDIA Research, Robotics Research Intern

Seattle, WA

Mentors: Dr. Ankur Handa, Dr. Dieter Fox, Dr. Byron Boots

Developed an algorithmic framework combining information theoretic MPC and entropy-regularized RL using learned *soft* Q-functions to mitigate short-horizon bias in path integral control.

Sep 2018-Aug 2019 **Georgia Institute of Technology**, *Graduate Research Assistant*

Atlanta, GA

Advisor: Dr. Byron Boots

- Differentiable trajectory optimization: Developed a structured learning framework for learning factor graph parameters by representing Gaussian Process Motion Planning as a differentiable computation graph.
- Leveraging Experience in Lazy Search: Formulated lazy search as an MDP and developed an approach
 to learn edge evaluation policies via imitatiion of oracule selectors, acceleratin planning in complex,
 high-dimensional problems.

Dec 2017-July 2018 Near Earth Autonomy, Robotics Engineer

Pittsburgh, PA

Designed an adaptive, sampling-based motion planning system for emergency landings under uncertainty for real-world UAVs.

Dec 2016-Nov 2017 Carnegie Mellon University, Research Assistant

Pittsburgh, PA

Mentors: Dr. Sebastian Scherer, Dr. Sanjiban Choudhury

Formulated heuristic search as sequential decision-making and developed a self-supervised imitation learning framework for learning search policies. Demonstrated intelligent search behaviors in complex environments with up to $70\times$ speedup over A* for real-world UAV motion planning.

May 2014-July 2014 Indian Institute of Information Technology, Hyderabad, Research Intern

India

Mentor: Dr. Suril V. Shah

Developed an inverse kinematics based optimal control algorithm for visual servoing of dual-arm space manipulators with real-time singularity avoidance in a coupled arm-base dynamical system.

Publications

Journal Publications

- [2] **Bhardwaj M.**, Choudhury S., Boots B., Srinivasa S., "Leveraging Experience in Lazy Search", Autonomous Robots (AuRo), 2021 **Link**: bit.ly/3Gpr6sO
- [1] Choudhury S., **Bhardwaj M.**, Arora S., Kapoor A., Ranade G., Scherer S., Dey D., "Data-driven Planning via Imitation Learning", International Journal of Robotics Research (IJRR), 2018 **Link**: goo.gl/sgG7LJ (**Paper of the Year Finalist**)

Peer Reviewed Conference Publications

- [12] Jawale N., Boots B., Sundraralingam B., **Bhardwaj M.***, "Dynamic Non-Prehensile Object Transport via Model-Predictive Reinforcement Learning (ICRA), 2025 **Link**: https://tinyurl.com/mu58xwve
- [11] Fishman A., Walsman A., **Bhardwaj M.***, Yuan W., Sundaralingam B., Boots B., Fox D., "Avoid Everything: Model-Free Collision Avoidance with Expert-Guided Fine-Tuning", Conference on Robot Learning (CORL), 2024 **Link**: shorturl.at/W3vtF
- [10] **Bhardwaj M.***, Lampe T., Neunert M, Romano F., Abdolmaleki A., Byravan A., Wulfmeier M., Riedmiller M., Buchli J., "Real-World Fluid Directed Rigid Body Control via Deep Reinforcement Learning", Learning for Dynamics & Control Conference (L4DC), 2024 **Link**: shorturl.at/CuaJf
- [9] Nakamura S., Higuera Arias C., **Bhardwaj M.***, Boots B., "Robotic System Performing Dynamic Interaction in Human-Robot Cooperative Work for Assembly Operation ", IEEE/SICE International Symposium on System Integration (SII), 2024 **Link**: shorturl.at/Zf7si
- [8] Bhardwaj M.*, Xie T *, Boots B., Jiang N., Cheng C., "Adversarial Model for Offline Reinforcement Learning", Conference on Neural Information Processing Systems (NeuRIPS), 2023 Link: short-url.at/fP128

- [7] **Bhardwaj M.**, Sundaralingam B., Mousavian A., Ratliff N., Fox D., Ramos F., Boots B., "STORM: An Integrated Framework for Fast Joint-Space Model-Predictive Control for Reactive Manipulation", Conference on Robot Learning (CoRL), 2021 **Link**: bit.ly/3ePBWNK (Among top 6% selected for oral presentation)
- [6] Bhardwaj M., Choudhury S., Boots B., "Blending MPC & Value Function Approximation for Efficient Reinforcement Learning", International Conference on Learning Representations (ICLR), 2021 Link: bit.ly/3i9VxtN
- [5] **Bhardwaj M.**, Handa A., Fox D., Boots B., "Information Theoretic Model Predictive Q-Learning", Learning for Dynamics and Control (L4DC), 2020 **Link**: bit.ly/2TyrhPT
- [4] **Bhardwaj, M.**, Boots B., Mukadam M., "Differentiable Gaussian Process Motion Planning", International Conference on Robotics and Automation (ICRA), 2020 **Link**: bit.ly/3x2AcXu
- [3] **Bhardwaj, M.**, Choudhury S., Boots B., Srinivasa S., "Leveraging Experience in Lazy Search", Robotics: Science and Systems (RSS), 2019 **Link**: bit.ly/2T13MKt
- [2] **Bhardwaj M.**, Choudhury S., Scherer S., "Learning Heuristic Search via Imitation", Conference on Robotic Learning (CoRL), 2017 **Link**: goo.gl/cPo2yQ
- [1] Mithun, P., Anurag, V. V., **Bhardwaj, M.**, Shah, S. V., "Real-Time Dynamic Singularity Avoidance while Visual Servoing of a Dual-Arm Space Robot", Advances in Robotics (AIR), 2015 **Link**: goo.gl/j1uVLg

Workshop Publications

- [2] Xie, T*, Bhardwaj M., Jian N., Cheng C., Boots B., "ARMOR: A Model-based Framework for Improving Arbitrary Baseline Policies with Offline Data.", Workshop on Offline Reinforcement Learning, NeurIPS, 2022 Link: tinyurl.com/mtkvxpxy
- [1] **Bhardwaj M.**, Handa A., Fox D., Boots B., "Information Theoretic Model Predictive Q-Learning", Workshop on Machine Learning for Planning and Control, ICRA, 2020 **Link**: bit.ly/3x7C95c

Professional Activities

Reviewer O Journals: IEEE Robotics and Automation Letters (RA-L), IEEE Transactions on Robotics (T-RO)).

• Conferences: IEEE International Conference on Robotics and Automation (ICRA), Conference on Robot Learning (CoRL), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Learning for Dynamics and Control (L4DC).

Volunteer Reader for PhD applications at Paul G. Allen School of Computer Science & Engineering, University of Washington

Invited Talks and Posters

Improving Model-Predictive Control with Reinforcement Learning

- University of Washington Robotics Colloquium, Nov 2020.
- ICRA Workshop on Machine Learning for Planning & Control, 2020.

Adversarial Model for Offline Reinforcement Learning

o NeuRIPS Workshop on Offline Reinforcement Learning, 2022.

Teaching

Fall 2023 **Graduate Teaching Assistant, University of Washington**, *CSE-446: Machine Learning (Instructor: Prof. Kevin Jamieson)*

Spring 2020 **Graduate Teaching Assistant, University of Washington**, *CSE-599W: Reinforcement Learning (Instructor: Prof. Byron Boots)*

Honors

2025 Peak Power Award, Boston Dynamics

For leading technical effort on vision-based dexterous manipulation for the eAtlas GTC video.

2018 Finalist, IJRR Paper of the Year

"Data Driven Planning via Imitation Learning."

2015 Institute Color Award, IIT Varanasi

Awarded for outstanding extra-curricular achievements.

Open-Source Code

S.T.O.R.M: A GPU accelerated MPC toolkit for robot control. [bit.ly/3y73HbW]

Search as Imitation Learning: Tensorflow pipeline for learning heuristic policies for motion planning. [goo.gl/YXkQAC]

Python Motion Planning: Lightweight library for motion planning research [goo.gl/88shhJ]

Technical Skills

Languages C++, Python

Frameworks & Tools Pytorch, JAX, MuJoCo, IsaacLab, ROS, OpenCV