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Experimental Setup

The initial phase of experimentation was carried out on a custom environment for 2D navigation
planning compatible with OpenAI Gym [3]. The intention behind development of this environment
was to easily benchmark the performance of state-of-the-art Reinforcement Learning and Imitation
Learning algorithms on learning search heuristics.

In order to overcome the changing sizes of the observation and action spaces in our setting, we use
insight from motion planning literature and represent an entire search state in terms of closest nodes
inO to a set of pre-defined attractor states and attractor paths. Attractor states are manually defined
states that can be thought of as landmarks trying to pull the search cloud in different directions.
Such states can be useful in pulling the search out of local minima such as a bugtrap or they could
be strategic orientations of the robot or an object the robot is trying to manipulate that lead to faster
solutions [2]. Attractor paths on the other hand are solutions to a small subset of environments
from the training dataset. In many episodic tasks, where the structure of the environment does
not change drastically between planning iterations, such path-reuse can be very useful in finding
solutions faster [5]. The planning algorithm is built into the environment, and the agent only receives
as an observation the nodes in the open list closest to each attractor paths/states. At each iteration
then, the action that the agent performs is to select a node from the observation to expand.

Although this is a generic framework that can be applied to many different problems, we chose not
to use it for this work. The reason for this choice was that in this paper, our aim was to build the
foundation for learning graph search heuristics as sequential decision making problem and clearly
demonstrate the efficacy of the imitation learning paradigm in this domain. We found that using
attractor paths/states would distract from the effectiveness of SAIL and also make learning easier
for other baseline methods.

In our final experiments, we instead featurize every pair (v, s) using simple information based on
the search tree and the environment uncovered up until that point. We talk more about the features
in a later subsection.

Additionally, we have developed a simple and intuitive Python based planning pipeline to serve as a
backend for the Gym environment. The planning environment makes it easy to incorporate machine
learning libraries [7] [1] with custom planning graphs requires only environment images as input.
We use this planning pipeline to conduct all our experiments. Source code and instructions can be
found via our project page at this link: https://goo.gl/YXkQAC

Feature Representation

We explore different ways to construct representative features for a node in the search tree. Although
technically, the features for a vertex v should depend on the parent edge e that leads to the vertex,
we ignore this in practice and consider a vertex in isolation to calculate features. It is important
to note that the features used must be easy to calculate (no high computational burden) and should
only require information uncovered by search until that point in time(else it would count as extra
expansions). To this end we divide our feature into two categories as follows:

Search Based Features: fS (v, s) =
[
xv, yv, gv, hEUC, hMAN, dTREE , xvg , yvg

]
, where:
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- (xv, yv) - location of node in coordinate axis of occupancy map.

- (xvg , yvg ) - location of goal in coordinate axis of occupancy map.

- gv - cost(number of expansions) of shortest path to start.

- hEUC - Euclidean distance to goal.

- hMAN - Euclidean distance to goal.

- dTREE - Depth of v in the search tree so far.

Environment Based Features: These features depend upon the environment uncovered so far, more
specifically the vertices in I.
fE (v, s) = [xOBS , yOBS , dOBSX , xOBSX , yOBSX , dOBSX , xCOBSY , yOBSY , dOBSY ], where:

- xOBS , yOBS , dOBSX - coordinates and distance of closest node in I to v

- xOBSX , yOBSX , dOBSX - coordinates and distance of closest node in I to v in terms of
x-coordinate.

- xOBSY , yOBSY , dOBSY - coordinates and distance of closest node in I to v in terms of
y-coordinate

The net feature vector is then a concatenation of the two vectors i.e, f = [fS , fE ] which gives a
17-dimensional feature vector.

We also explored the possibility of using a local image patch representing the explored obstacles
in black and free space in white as fE , but found that the patch used must be large enough to
contain useful information. Testing the efficacy of the image patch as feature and combining it with
different machine learning models (eg. CNNs) would require further experimentation especially the
computational trade-offs it poses.

Network Architecture and Hyperparameters

The function Qθ is represented using feed-forward neural network with two fully connected hidden
layers containing [100, 50] units and ReLu activation. The model takes as input a feature vector
f ∈ F for the pair (v, s) and outputs a scalar cost-to-go estimate. The network is optimized using
RMSProp [8]. A mini-batch size of 64 and a base learning rate of 0.01 is used. The network
architecture and hyper-parameters are kept constant across all environments.

Practical Algorithm Implementation

Since the size of the action space changes as more states are expanded, the SAIL algorithm re-
quires a forward pass through the model for every action individually unlike the usual practice of
using a network that outputs cost-to-go estimate for all actions in one pass as in [4]. This can get
computationally demanding as the search progresses (O (N) in actions). Instead, we use a priority
queue as O which sorts vertices in increasing order of the cost-to-go estimates as is usually done
in search based motion planning. The vertex on the top of the list is then expanded. We use two
priority queues, sorted by the learner and oracle’s cost-to-go estimates respectively. This allows us
to take actions in O (1) but forces us to freeze the Q-value for a vertex to whenever it is inserted in
O. Despite this artificial restriction over the policy class Π, we are able to learn efficient policies in
practice. However, we wish to relax this requirement in future work.

Details of Baseline Algorithms

Supervised Learning (Behavior Cloning)
The supervised learning algorithm is identical to SAIL with the key difference that roll-outs are
made with πOR and not πmix. This is equivalent to setting the mixing parameter β = 1 across all
environments. For completeness, we present the algorithm below in Alg. 1 We use m = 600 for all
the environments. The network architecture and hyper-parameters used are the same as described in
the prior subsection.
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Algorithm 1: Supervised Learning
1 Initialize D ← ∅,
2 Collect datapoints as follows:
3 for i = 1, . . . ,m do
4 Initialize sub-dataset Di ← ∅;
5 Sample φ ∼ P (φ);
6 Sample (vs, vg) ∼ P (vs, vg);
7 Invoke clairvoyant oracle planner to compute QCOR (v, φ)∀v ∈ V ;
8 Rollout a new search with πOR;
9 At each timestep t pick a random action at to get corresponding (v, st);

10 Query oracle for QCOR (v, φ) ; . Look-up optimal cost-to-go

11 Di ← Di ∪
〈
v, st, Q

COR (v, φ)
〉
;

12 Continue roll-out with πOR till end of episode.;
13 Append to c.s classification data D ← D ∪Di;
14 Train θ̂ on D to get π̂;
15 return π̂

Q Learning with Function Approximation
We use an episodic implementation of the Q-learning algorithm which collects data in an iteration-
wise manner similar to SAIL. Qθ is trained on the aggregated dataset across all iterations by re-
gressing to the TD-error. The aggregated dataset D effectively acts as an experience replay buffer to
which helps in stabilizing learning when using neural network function approximation as has been
suggested in recent work[4]. However,we do not use a target network or any other extensions over
the original qlearning algorithm in our baselines, [9][6]. We also use only a single observation to
take decisions and not a history length of past h observations for a fair comparison with SAIL which
also uses a single observation. Alg. 2 describes the training procedure for the Q-learning baseline.
C is the one step cost which is 1 for every expansion till goal is added to the open list. We use

Algorithm 2: Q-Learning
1 Initialize D ← ∅, π̂1 to any policy in Π
2 for i = 1, . . . , N do
3 Initialize sub-dataset Di ← ∅
4 Let mixture policy be πmix = ε-greedy on π̂i with εi
5 Collect mk datapoints as follows:
6 for j = 1, . . . ,m do
7 Sample φ ∼ P (φ);
8 Sample (vs, vg) ∼ P (vs, vg);
9 Sample uniformly k timesteps {t1, t2, . . . , tk} where each ti ∈ {1, . . . , T};

10 Rollout a new search with πmix;
11 At each t ∈ {t1, t2, . . . , tk}, Di ← Di ∪ 〈v, st, C, vt+1〉 ; . vt+1 is the least-Q

action after executing at in st
12 Continue roll-out with πmix till end of episode.;
13 Append to dataset D ← D ∪Di;
14 Train θ̂i+1 by minimizing T.D error on D to get π̂i+1;
15 return Best π̂ on validation;

k = 100 and ε0 = 0.9. Epsilon is decayed after every iteration in an exponential manner. Network
architecture and params are kept the same as SAIL.

Cross Entropy Method (C.E.M) We use C.E.M as a derivative free optimization method for train-
ing Qθ̂. At each iteration of the algorithm we sample batchsize = 40 set of parameters from a
Gaussian Distribution. Each parameter is used to roll-out a policy on 5 environments each and the
total cost is collected. The total cost (number of expansions) is used as the fitness function and
the the best performing, nelite = 20% of the parameters are selected. These elite parameters are
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then used to create a new Gaussian distribution (using sample mean and standard deviation) for the
next iteration. At the end of all iterations, the best performing policy on a set of held-out states is
returned. For this baseline, we use a simpler neural network architecture with one hidden layer of
100 units and ReLu activation.

Analyzing the time complexity of SAIL

The computational bottleneck in SAIL is the Select function which requires estimating the Q-value
for every node in the open list O. Contrast this with something like Dijkstra’s algorithm which se-
lects a node to expand in very little time, but wastes a lot of computation in excessively expanding
nodes and evaluating edges. In order to analyze the usefulness of SAIL in terms of computational
gains, we make the following assumptions. Firstly, we assume that the computational cost of calcu-
lating the Q-value of a single node(including feature calculation and forward pass through function
approximator) is equal to the computational cost of Expand function (involves checking all edges
coming out of a node for collision and calculating edge costs). This is in reality a very conserva-
tive approximation as in many high-dimensional planning problems, collision checking is way more
computationally demanding as it requires expensive geometric intersection computations. We also
ignore the computational cost of re-ordering the priority-queue whenever a node is popped which
means Dijkstra’s algorithm can select a node to expand in O(1). Given a graph with cardinality k,
we obtain the following time complexities for SAIL and Dijkstra’s algorithm.

SAIL test time complexity: Assume SAIL did A expansions before it found a solution starting
from an empty O. Also assume that states are never removed from O.
Total Select complexity: O (k + 2k + 3k + . . .+Ak) = O

(
kA2

)
Total expansion complexity: O(

∑A
i=1 k) = O(Ak)

From this we get total complexity of SAIL to be O
(
kA2

)
.

Dijkstra’s test time complexity: Assume Dijkstra’s algorithm does B expansions before finding a
path. As mentioned earlier, we assume that priority-queue reordering can be achieved in constant
time.
Total Select complexity: O(1)
Total expansion complexity: O (kB) From this we obtain total complexity for Dijkstra’s algorithm
to be O (kB).

From the above analysis, for SAIL to have lesser overall computational complexity than uninformed
search we require the following condition to be satisfied:

A2 < B (1)

Thus, SAIL must obtain a squared reduction in total number of expansions for it to be computa-
tionally better than uninformed search. We argue that this strengthens the case for using SAIL in
higher dimensional search graphs as in uninformed search expands a very large number of nodes as
the total number of graph nodes increases.
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